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The behavior of a test particle in a rarefied gas of classical particles is investigated, 
considering difli~rent interaction mechanisms (specular and diffuse reflection, 
respectivelyL For large mass ratio between test and gas particles, analytical 
expressions for the linear friction coefficient are derived. Moreover, the existence 
of directed motion of asymmetric test particles with distinct initial conditions (but 
in the absence of any gradients) is shown. The analytical results are supported by 
a numerical simulation technique applicable to systems with any mass ratio, which 
is described here in detail. 

KEY WORDS: Brownian motion; friction coefficients; fluctuation-induced 
transport; numerical simulation. 

1. I N T R O D U C T I O N  

Since Einstein 's  work  in 1905 ~1~ the phys ica l  p r o b l e m  of  Brownian  m o t i o n  
has been the subject  of  numerous  invest igat ions ,  bo th  theoret ica l  and  
exper imental .  Wi th  the deve lopmen t  o f  computers ,  numer ica l  me thods  have 
become increas ingly  i m p o r t a n t J  2 s~ Brownian  par t ic les  have a very large 
mass  c o m p a r e d  with the par t ic les  of  the su r round ing  medium.  This  fact 
p lays  an i m p o r t a n t  role in the analy t ica l  t r ea tmen t J  6~ By means  of  com-  
puter  simullations, it is poss ible  to invest igate  in detai l  Brownian  par t ic les  
(or  test par t ic les)  with masses  c o m p a r a b l e  wi th  the m e d i u m  particles.  ~7 ~ 
In mos t  cases one is interested in the behav io r  of  the veloci ty au tocor re l a -  
t ion function of  the test par t ic les  character is t ic  for different p roper t ies  of  
the system under  consideration.~ 71 

lnstitut fiir Physik, Technische Universit~it llmenau, D-98693 llmenau, Germany. 

1067 

(~)22-4715'97'0300-1()67512.50/0 ~' 1997 I'lenum Publishing Corporation 



1068 Handrich and Ludwig 

In recent years, inspired by the study of biological systems in which 
some kind of directed thermal motion may occur, the problem of Brownian 
motion has again attracted the interest of physicists (tbr a review, see ref 12 
and the papers cited therein). It has been shown both experimentally and 
theoretically that under certain (nonequilibrium) conditions directed trans- 
port of particles can be extracted from the white noise of a thermal bath. 

In this paper we present analytical and numerical results for a classical 
model suggested in ref. 13. In the interaction of our test particles with the 
gas particles we distinguish the usual specular reflection and completely 
diffuse elastic reflection. 

The numerical simulation technique is described in detail. In the 
analytical part we derive expressions for the linear friction coefficients of 
specular reflecting, diffuse reflecting, and asymmetric test particles, respec- 
tively, for the case of a large mass ratio M/m ~> 1 (M is the mass of the test 
particle, m is the mass of the gas particle). Moreover, we show the existence 
of directed acceleration of a test particle as long as it is not completely in 
equilibrium with its environment. 

Then the analytical results are confirmed and illustrated by a numeri- 
cal simulation. 

2. M O D E L  

For simplification of the numerical and analytical treatment, we 
choose flat planar test particles (TP) with their surface normals fixed 
parallel to the x axis of the laboratory system 4 ~3. ~4~ (see Fig. 1 ). The length 
of the edges (or diameter) of the TP  is large in comparison with its thick- 
ness; thus the contribution of the edges to the motion of the TP can be 
neglected. Moreover, the rotational degrees of freedom of the test particle 
are not considered here. 

t e s t  p a r t i c l e  

ma.~s M 

X 

�9 gas particles 
m ~'L~ s m 

Fig. I. Model of the plun~r test particle. 
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As a physical example one could imagine test particles with spon- 
taneous magnetization in the direction perpendicular to their planes, 
located in a sufficiently strong external magnetic field. 

The motion of the TP results from collisions with the surrounding gas 
particles (GP), which are treated as classical particles. The medium gas is 
assumed to be in thermodynamic equilibrium at every moment. Addi- 
tionally, it is sufficiently rarefied that "snowplough effects" and recollisions 
of the test particles do not play a role, i.e., the gas particles in the environ- 
ment of the test particle always have a Maxwell velocity distribution? ~5~ 

First we need the flux of gas particles to the planes of the TP. In the 
following we always refer to the left-hand side of the TP, if not mentioned 
otherwise. The TP is moving in the laboratory system with the velocity 
u=(u.,., u.,., u:). The flux of GP to the left-hand face of the TP, i.e., the 
number of incident particles per time, is 

dU X, dt nA (v.,. u,.) fa.t(v) dv (1) 

n is the number density of the medium gas, A the surface area of the TP, 
and v the velocity of the gas particles. The distribution function of the GP 
velocities is a Maxwell distribution 

=( ,,, ),,: ( , , , , : )  
J;u(v) d3v \2r&TJ  exp \-~-s d3v (2) 

with the mass m of the GP and the temperature T of the gas. 
For simplification, we introduce reduced velocities v*, u* and a 

reduced time scale t*: 

k~l~lT k~lT 1 2 ~ n t ,  (3) 
v = v * ,  u = u * ,  t = n---A x,/ k T  

Then (1) with (2) reads 

; ( ' )  dN 1 ( v * - u * ) e x p  - ~ v  .2 d~v * (4) 
dt* 2re "*, >~,4 

In the following we omit the asterisk and always refer to the reduced 
variables. Now we perform the integration in (4) over the velocities 
U,-~ v,. ~< + oe and - o e  ~< v,. : ~< + oe of the GP and get the total flux J~ 
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to the left-hand surface of the TP. With the notation rt for the mean time 
between two impacts on the left-hand side of the TP, we get 

~-~ = J,(u,.) 1 ( - ~  u:.) + u,. X/~ [ - - ]  (5, = - - = e x p  erf(UL~ I 

with the definition of the error function 

erf(x) := e -r d~ 
) 

In order to get the flux to the right-hand side of the TP, we simply replace 
U,- by -u.,. in (5). 

For large masses of the TP, u.,_ ~ 0 holds, and the mean time between 
two impacts on the TP becomes independent of u,.. Taking into account 
both sides of the particle, we find for the mean time between two collisions 
of a TP at rest (in nonreduced units) 

1 2 
r~ "~l kT hA(v) (6) 

with ( v )  the mean magnitude of the GP velocities. 
At constant u,. the flux of incident GP is not dependent on time. 

Therefore, in the numerical simulation one can treat the impact times and 
the velocities of the incident particles as independent of each other. First we 
look for the distribution function of the time intervals between two suc- 
cessive impacts of GP on the faces of the TP. Let t - -0  be the moment of 
the last foregoing collision between the TP and a GP. In order to derive 
the distribution function of interest, we divide the time interval [0 . . .  t] 
into v subintervals which all have the same size At. 114~ Let v be sufficiently 
large for the subintervals to be very small. In the sense of a Markov pro- 
cess, the events in all subintervals are assumed to be statistically completely 
independent. The probability of an impact of a gas particle on the left-hand 
side of the test particle is the same in each of the subintervals. As long as 
u.,.=const, the GP hit the left-hand side of the TP with a constant fre- 
quency 1/rt and 

At 
Ap=- -  

Ti 

is the probability of a collision in At. 
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Now we assume the TP to be hit by a G P  exactly in the (v + 1)th sub- 
interval without preceding hits in the interval [ 0 . . -  t]. The probability for 
that event is 

A P = ( 1 - - A t ~  ''At (7) 

We substitute v by t/At and rewrite (7): 

(8) 

In the limit At ~ 0 it follows from 

lim (1 - e ) - I / ' : =  e 

that 

, 
dP = F(t) dt = -  exp - dt (9) 

F(t) is the distribution function of the time intervals between two successive 
impacts of G P  on the left-hand side of the TP  if the average flux to the left- 
hand TP  face is 1/r~. For  the distribution function on the right-hand side, 
one simply substitutes u.,. by -u.,. in (5) and inserts the resulting rr into (9). 
The assumption of a Markov process in the derivation of (9) implicitly 
supposes that memory effects of the medium gas can be neglected. In 
particular, short-time recoilisions between G P  and TP are excluded. This 
assumption is reasonable for very heavy TP, where the G P  are moving 
with much higher velocities and escaping very fast from the TP  after a 
collision. 

However, even in the case of small mass ratios M ~ m, the assumption 
of a Markov velocity process is permitted within our three-dimensional 
model system. The medium particles are moving with a mean velocity ( v , )  
in the tangential direction relative to the test particle, r is the mean free 
time of the TP,  and d its diameter (or length of the edges). If the condition 

d~(v,)r  

is fulfilled, the G P  cross the spatial region passed by the TP  in a very short 
time compared to the mean free time of the TP. The possibility of a recolli- 
sion between the TP and a particular G P  can be made arbitrary small by 
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increasing the mean free time r. Thus, assuming a very rarefied medium 
gas, the conditions of a Markov process are fulfilled. 

Now we are able to simulate the motion of our test particle due to the 
collisions with the surrounding gas particles in a very efficient way. The 
simulation runs as follows t~4J" 

I. The mean collision frequencies corresponding to the actual 
velocity u, are calculated by (5) for the left-hand side and the right-hand 
side of the TP, respectively. According to the ratio of the incident fluxes to 
both faces of the TP, the side of the next impact of a GP is drawn. After 
that, the moment of the collision is drawn using (9) with the appropriate 
time constant r~,.. Now the moment and the side of the next collision with 
a G P  are defined. 

2. The velocity of the incident GP is drawn. The probability density 
of the tangential velocity components v, and v_ is given by the Maxwell 
distribution: 

f~w(vi)~exp(--v~/2), i= y ,z  

The probability density of the normal velocity components follows from 
the incident flux of the gas particles: 

])(v.,.)~(v.,.-u,.)exp(-v~./2) v,. > U,. (left-hand side) 

j')(v.,.) ~ (u.,. - v,.) exp( - v'-.,./2) v,. < u,. (right-hand side) 

3. The velocity of the TP after the collision is calculated due to the 
special interaction mechanism (specular or diffuse reflection). Then the 
cycle starts again with the new velocity of the test particle. 

Between the collisions the velocity of the TP is constant. The quan- 
tities of interest, such as the velocity distribution or the mean velocity of 
the TP, are saved for later analysis. 

3. DIFFUSE-ELASTIC REFLECTION 

A collision between TP and GP is called diffuse-elastic if it fulfills the 
following conditions: 

1. The reflection is diffuse, i.e., GP  hitting on the TP with a fixed 
incident angle are scattered into different directions. The distribution of the 
possible directions depends on the particular model considered. 

2. The collision is completely elastic, i.e., the total kinetic energy of 
the colliding particles is conserved. 
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The problem of two interacting particles is commonly simplified by 
introduction of the center-of-mass velocity and the relative velocity of the 
particles. From the conservation laws of energy and momentum it follows 
that the magnitude of the relative velocity g = v -  u is conserved during a 
completely elastic collision. The diffuse reflection is simply a rotation of the 
vector of the relative velocity. Now we change into a coordinate system 
fixed at the TP. In this system the TP is at rest, and the GP hit the TP with 
the relative velocity g and leave with the velocity g'. We define the incident 
and reflection angles inside this system. Let ~0 be the angle between the 
projection of g into the (y, z) plane and the y axis and ,9 the polar angle 
between the velocity vector and the x axis, i.e., the surface normal of the 
TP face. Without violation of the conservation laws of energy and momen- 
tum any reflection angles ~o' and O' may be choosen. The relative velocity 
of the particles after the collision is then 

gl,. = g cos ,9' 

g~. = g  sin ,9' cos ~o' (10) 

g'__ = g sin ,9' sin ~o' 

The simulation of the diffuse-elastic collision is restricted to the choice of 
the reflection angles q~' and `9'. For simplification we assume all azimuth 
angles q~' to be equivalent and independent of the incident direction; thus 
~o' is uniformly distributed between 0 and 2n. 

It remains to find the distribution function of the polar angle `9'. In the 
following the terms incident and reflection angles always refer to the polar 
angles `9 and `9'. 

3.1. Distribution Functions of Reflection Angles 

In the simple case of specular reflection of the GP at the surface of the 
TP the reflection law `9'= `9 holds. According to Lambert's law, completely 
diffuse reflection is described by a cosine-type distribution of the number 
of reflected particles depending on the reflection angle 1~6~ (N vs. `9'). 
The distribution over the solid angle is d N ~  cos 9̀ sin `9 dO d~0, and with 
normalization the distribution function of the reflection angles is 

2 cos 0' sin ~9' dO' ( 11 ) 

822 86,5-6-12 
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4. RESULTS 

4.1. Analytical Friction Coefficients 

The motion of very heavy test particles in an environment of much 
lighter medium particles (Brownian motion) is commonly described by 
means of the Langevin equation "~ 

d / i  v 

dt = - yu,. + a(t) ( 12 ) 

YU,. is the systematic friction force (strictly speaking, the friction accelera- 
tion) exerted on the test particle, averaged over a large number of collisions 
with the medium particles, and a(t) is the fluctuating random force. The 
formal solution of (12)  is 

1 

u,.(t) = u,.(0) e r, + e- r, e"'r d~ (13) 

Without random force, any initial velocity U,.(0) decays exponentially with 
time. The coefficient y is called the linear friction coefficient of the test 
particle. Now we want to derive an expression for the friction coefficient 
of a TP with diffuse-elastic interaction and compare it with the friction 
coefficient of a specular reflecting particle. Moreover, the equation of 
motion of an asymmetric TP with one specular reflecting face and one 
diffuse reflecting face is investigated. We use again the TP-fixed coordinate 
system, where the GP are moving with the relative velocities g. By integration 
of the velocity changes per single collision over the total flux of incident GP, 
one finds the average acceleration exerted on the TP  as the result of the 
numerous collisions with the GP: 

d/ix - ~ 
dt -0 f f Au'('(g)'g'f(g'u)d~g 

- - f  f f Au!,!"(g). g , . f ,g ,  u)d3g 
g ,  < 0 

(14) 

The index 1 denotes the left-hand side of the TP, the index r the right-hand 
side (see Fig. 1). 

The velocity change of the TP by a single collision is 

111 D1 

�9 i . - -  (g,. -- g.',.) = + - M - ~ m g ( c o s O + c o s O ' )  (15) z ~ l l v  = l l v  - -  U v  - -  M +  111 
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The positive and negative signs hold on the left-hand side or on the right- 
hand side of the TP, respectively. 

On specular reflection, in (15) c o s S ' = c o s 0  holds. On completely 
diffuse reflection, cos0 '  in (15) is replaced by its mean value due to the 
distribution function ( 11 ) 

f j  O' ,9' " (cos  8 ' )  = 2  cos 2 d(cos ) =  (16) 

because many single collisions contribute to the friction force. 
In the TP-fixed coordinate system the entire gas medium is moving 

with the mean velocity - u .  The distribution function of the relative 
velocities in this system is 

n, e,p E (17) 

Note that (17) is not normalized in the usual form, since the factor 1/x/ /~ 
is already contained in the reduced time scale [cf. (14), (3)].  

Since the TP  are much heavier than the gas particles, u ,~g  holds for 
the magnitudes of  the particle velocities. We expand ( t7)  in a power series 
to first-order terms in u: 

, ( ) J'(g, u) d~g = 7 ~  (1 -g,U,.-g.,.~(,.-g:u:) exp - l g  2 d-~g 

t 
= 2---~ ( 1 - u~ g cos ,9 - u>. g sin 0 cos ~o-  u: g sin 0 sin ~o) 

(1,) xexp  -- ~ g- gZ sin O dg d,g d~o (18) 

Now we can formulate the equations of motion for the different test par- 
ticles. We insert the expressions (I5) and (18) into Eq. (14} and integrate 
over the appropriate regions of the relative velocities. We obtain (in 
reduced units) for a TP with both faces specular reflecting 

d•/.v m 8 m  

dt .,p~c,, ,r M +  - - - - ~  u" (19) 
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The corresponding expressions for a double-side diffuse TP  and an asym- 
metric TP are 

du.,. 68m 

dt dil"usc-- 9 ( M + m )  u.,. 

du,. = 70m 

dt , ~,~ .... 9(M + m) u.,. 

(20) 

(21) 

The comparison with (12) yields the corresponding friction coefficients X. 
We rewrite the friction coefficients in nonreduced units ~t3" t s~. 

m / k T = 2nA rn 
X..p~.,I.r = 8hA M + m "4 2ton ~ ( v )  

68 m /kT =17hA m 
")'dill-use='9 nA M + m  ~/2mn 9 M~-mm ( v )  

The ratio of the friction coefficients of specular and diffuse reflecting par- 
ticles, respectively, is 

)'diffuse 17 
)'specular 18 (22) 

The friction coeff• of an asymmetric particle is 

)'asym = 2() SpCCL,[~.,I" "~ )'diffuse) 

In a similar way and without any approximations, one can derive the fric- 
tion coefficients for the tangential motion of an asymmetric test particle. 
Obviously, the collisions on the specular side of the TP yield no contribu- 
tion to the friction force in the tangential direction. Further, due to the 
uniform distribution of the azimuth reflection angle cp', the reflected G P  on 
the diffuse side of the TP do not contribute to the damping of the tangen- 
tial TP velocity. The only contribution arises from the incident particles on 
the diffuse side. Assuming that the right-hand side of the TP  is diffusely 
reflecting, the equation corresponding to (14, 15) for the tangential TP  
velocity u,. reads 

du,. m f 
d; M+,,n  J f fg, .g. , . f(g,u)d-'g (23) 
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We perform the integration and get 

du.,. rn J,.(u.,.) u,. (24) 
dt M + m �9 

J,.(u.,.) --- 1/r,.(u,.) is the incident flux of gas particles to the right-hand side 
of the TP. For u, .=0,  J r (0)= 1, equation (5) holds, and the ratio of the 
normal to the tangential friction coefficient of an asymmetric test particle is 

~'normal lu,=O~ 70 ~,.,,.,, = - -  ~ 7.8 (95) 
)~langential . 9 

If the normal velocities u.,. of a TP ensemble are equilibrium distributed, 
the incident flux of GP to one TP side is v/2 (5) and the ratio of the nor- 
mal to tangential friction coefficients is 

~', ......... i c cq , i l i t , ~=  7 0  ~ 5 . 5  
, . ~ 

) tangumml ~ sym 9 
(26) 

In both cases, there is a considerable difference in the friction coefficients 
and hence in the relaxation times of the normal and tangential degrees of 
freedom of the asymmetric test particles. This fact becomes important in 
the future discussion of the relaxation behavior of asymmetric test particles. 

Including terms of second order in u in the expansion of the distribu- 
tion function (17) gives for the normal direction "friction force" of an 
asymmetric TP 

f(g,  u)~Z,,d o,.0r 1 . . . . . .  
= 4--n [ ( g :  - I ) u; .  + (g.7. - 1 ) u ~  + ( g_-_ - -  1 ) u :  

+ 2g.,. g, .u ,u , .  + 2g.,. g_-u,.u: + 2g,. g=u,.u-] exp(--g2/2) 

These terms yield the additional contribution 

d-t ,.,~ . . . .  8 ( M +  m) 5 )  (271 

to the systematic friction force of the a s y m m e t r i c  test particle. For sym- 
metric test particles (both sides specular or both sides diffuse reflecting), 
the respective second-order terms (27) are identically zero. Now we are 
able to discuss several special cases of the behavior of an ensemble of asym- 
metric test particles on the basis of (21) and (27): 
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The equipartition law (u~.)=(u~)=(u~) holds in thermo- 
dynamic equilibrium, and the systematic acceleration resulting 
from (27) vanishes. Additionally, ( u , . ) = 0  holds in equilibrium, 
and an ensemble of test particles in equilibrium receives no directed 
acceleration, as expected from the second law of thermodynamics. 

If the degrees of freedom of the ensemble of asymmetric test par- 
ticles are not in equilibrium, a resulting directed acceleration of the 
TP follows from (27). The direction of the acceleration depends on 
the TP velocities of the tangential and normal degrees of freedom, 
respectively. 

4.2. Numerical Results 

4 .2 .1 .  Equilibrium Properties. As a check for the numerical 
method used, we first consider the equilibrium properties of our test par- 
ticles and compare them with the theoretical predictions. The test quantities 
are the mean and the mean square TP  velocities calculated for a single par- 
ticle from the time average over 108 collisions with the gas particles. 

The results of the numerical simulation for different test particles are 
collected in Table I. Here the velocities are shown in units of . ,~/M, 
differing from the convention mentioned above. In these units the first two 
moments of the equilibrium velocity distribution (Maxwell distribution) 
a r e  

( u i )  =0 ,  (u~)  = 1, i=x,y,z 

The corresponding values from our simulation (Table I) are in very good 
agreement with the theoretical predictions; the deviations are within the 
statistical uncertainties. The numerical method is found to reproduce these 
equilibrium properties of the test particles correctly. 

4 .2 .2 .  F r i c t i o n  C o e f f i c i e n t s .  To calculate the friction coefficients, 
for each kind of TP an ensemble of 108 test particles with masses M/m = 100 
and with fixed initial velocity 

u , ( t = O ) = ~  

was followed over a time interval t = 0 . . . 2 0 r o  [see Eq. (6)] and the 
development of the mean velocity of the ensemble in time was determined. 
(Remember that r0 is the mean time between two impacts on a TP at rest.) 
With (13) the slope of the logarithmic plot of ln(u/uo) vs. t yields the 
friction coefficient of the TP. Figure 2 shows the logarithmic plot of the 
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Table I. The First Two Moments  of the Velocity Distribution Function of 
Di f ferent  Test Particles from a Time Average of a Single Particle over 108 

Collisions" 

M/m (u ,>  (u~.) (u , . )  (u~)  ( u : )  ( u_.-" ) TT 

1 0.00002 0.9998 - -  - -  - -  s/s 
10 0.00003 0.99998 - -  - -  - -  s/s 

100 -0.0007 0.9994 . . . .  s/s 
1 0.00003 1 . 0 0 0 1  -0.0001 0.99994 0.00007 1.0002 d/d 

10 -0.0001 0.9996 -0.0002 0.999 -0.0001 1.0007 d/d 
100 0.0002 0.9996 -0.0004 1 .001 -0.0009 0.9995 d/d 

1 0.00003 1.00008 -0.0001 1 . 0 0 0 0 1  0.00002 1.00008 s/d 
10 0.0001 0.99994 -0.0001 1.0007 -0.0003 0.999 s/d 

100 -0.001 1.0008 0.001 1.00009 -0.0006 0.999 s/d 

"The first column shows the mass ratio of test to gas particles, the last column gives the 
reflection properties of the left- and right-hand sides of the TP, respectively: s = specular, 
d = difl'use. 

mean TP velocities together with the corresponding linear fit curves for a 
double-side specular and a double-side diffuse reflecting test particle. The 
slopes of the linear regression lines are 

sire ~ sire 
difl'u.~,~ = 0 . 0 7 5 0 7 ,  ) sr,,:,:ut,,r = 0 . 0 7 9 5 5  

B o t h  v a l u e s  o f  t h e  f r i c t i o n  c o e f f i c i e n t  a r e  in  e x c e l l e n t  a g r e e m e n t  w i t h  t h e  

t h e o r e t i c a l  r e s u l t s  ( 2 0 )  a n d  (191, r e s p e c t i v e l y .  T h e  d e v i a t i o n s  a r e  less  t h a n  

0.5 % ,  a n d  t h e  r a t i o  o f  t h e  f r i c t i o n  c o e f f i c i e n t s  o f  17/18 is c o n f i r m e d  b y  t h e  

s i m u l a t i o n � 9  

0.0 

- 0 . 2  

l,l((u~(t))/u~(O)) -0 .4-  

- 0 . 6 -  

- 0 . 8  
0 

% 

t[d 

Fig. 2. Logarithmic plot of the mean velocity of an ensemble of 10 X test particles with mass 
M/m = 100 and a fixed initial velocity: both sides diffuse reflecting (lilled circlesl, both sides 
specular rellecting (empty circlesl. 
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4.2.3. Directed Acceleration of Asymmetric Test Particles. 
The effect (27) of directed acceleration of a TP ensemble in nonequilibrium 
is of second order in u and decays rapidly with growing mass ratio M/m. 
To extract the effect from the noisy background within a reasonable com- 
puter time, we choose test particles with masses M/m = 1. In this case a 
quantitative comparison with (27) is actually not possible, but the effect 
suggested by the analytical result for massive test particles should remain 
even for lower mass ratios M/m. Thus the existence of a directed accelera- 
tion can be shown at least qualitatively. 

Figure 3 shows the development in time of the mean velocity of three 
ensembles of 108 asymmetric test particles (left-hand side specular reflect- 
ing, right-hand side diffuse reflecting) with different initial velocity distribu- 
tions. The ensemble starting from thermodynamic equilibrium (i.e., initial 
velocities in all degrees of freedom are Maxwell distributed) shows no 
directed acceleration. Thus the second law of thermodynamics, forbidding 
the existence of a perpetuum mobile of the second kind, is not violated. 

However, the members of an ensemble of asymmetric test particles 
starting with a nonequilibrium velocity distribution are accelerated on 
average in a preferred direction as long as thermodynamic equilibrium is 
not established. The sign of the directed acceleration is given from (27) by 

The angles indicate the average over the entire ensemble. 
Even ensembles of TP with initial equilibrium velocity distributions 

but at different temperature than the gas medium are accelerated in a 
preferred direction while relaxing to the temperature of their environment. 
The initial isotropy of the TP velocity distribution is temporarily destroyed 

(u~(t)) 

0.01- 

0.00 

-0 .01 

/ 
/ 

/ 
k / 

I / 

lb-I 

Fig. 3. Mean velocity {in units Ax/~/ml of an ensemble of l0 n test particles with masses 
M/nl = 1 and different initial velocity distributions: {--)  all degrees of freedom Maxwell dis- 
tributed. ( . . .  1, u(0)= 0, 1---I ,  u.,.(0l = 0, tangential degrees of lYeedom Maxwell distributed. 
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0.002 

(u~(t)) o.ooo- 

-0.002- 
/ 

x l 

i 3 = -  4 
t[fl 

Fig. 4. Mean velocity (in units ~ )  of an ensemble of l0 s test particles with masses 
M/nT= I. At tile starting point, the test particles have an equilibrium velocity distribution 
corresponding to temperature T., which is difl'erent from the temperature T~, of the gas 
particles: ( ) T.=0.ST~.  1-- -) T . =  1.2T~,. 

by the much faster relaxation of the normal velocity components to equi- 
librium. The isotropy is restored later alter the relaxation of the tangential 
degrees of freedom of the TP. Thus, if we put (within the framework of our 
simple model) an ensemble of asymmetric test particles into a gas medium 
at another temperature, the particles will be shifted on average in one 
direction as long as a difference in temperature remains. The directed 
motion of the TP vanishes as the ensemble of TP reaches the temperature 
of the environment and equilibrium is established (Fig. 4). 

For an intuitive explanation of the phenomena shown in Figs. 3 and 
4, we consider an asymmetric TP in the special case u,. = 0 and u,. :# 0 in 
more detail. As in the numerical simulations, the left-hand side of the TP 
is specular reflecting and the right-hand side is diffuse reflecting. 

Now the change of the TP velocity due to the incidence of a G P  is (15) 

l~ll I t1 171 
A ""~ - -  - -  v.,. - -  v c o s 0  (u.,.=0) (28) 

u,. - M + m  g" M + m  M + m  

For  the isotropic velocity distribution of the gas, (cos  0)  = 2/3 holds. The 
flux of incident G P  and the amount  of Au!,!" are the same on both sides 
of the TP; thus on the average the incoming GP do not yield an effective 
acceleratioh of the TP in the x direction. 

Obviously, the outgoing G P  on the specular reflecting side yield the 
same contribution (28) to zfU,.. On the diffuse reflecting side, in contrast, 
we have to take into account the full amount  of the relative velocity g 

171 
zf "~"t~ g c o s  0'  (29) 

u.,. = m + m 
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cos 0' is again isotropically distributed exactly like cos 0 in (28). Remark 
the different meanings of 0 (v,. = v cos 0 in the laboratory system) and 0 
(g.,. = g  cos 0 in the TP-fixed coordinate system). 

Due to the isotropy of the velocity distribution of the GP, the TP is 
hit with the same probability by a GP  having the same velocity component 
along the y axis and against the y axis of the laboratory system, respectively 
(see Fig. 5). If the test particle is moving with a tangential velocity u = ue,., 
the effective relative velocity of the incident particles reads (see Fig. 5) 

g~n.= �89 - ul + I v 2 -  u13 = ' l l v ,  - u] + Iv, + ul] (30) 

The last equality is obvious from symmetry considerations. 
All terms in (30) are positive. We square the equation and get 

g~.~= �88 - u)-" + (v, + . )  ~ + 2 Iv, - u l .  Iv, + ul ] 

With the estimation 

I v l - u l .  Iv, + u l  > / I ( v , - u ) .  (v, + u ) l  = Iv-" - u-'l 

and further Iv 2 - u 2] >/v 2 - u ' -  we find 

g~.n.>~ v 2 (31) 

i.e., the effective amount of the relative velocity is increased due to the 
tangential velocity of the TP. 

In the case of specular reflection, the tangential TP velocity has no 
influence in (28). On the other hand, as mentioned above, cos 0 and cos ,9' 
follow the same isotropic distribution function. Thus in the special case 
considered here (u.,. = 0, u.,. # 0), the diffuse side yields a larger contribution 
to the effective acceleration than the specular reflecting one. 

Y 

test particle 

:-ff  

U2 "'- ~ v~ ...  ,, _ff 

2 

Fig. 5. Test particle and pair of incident gas particles in tile TP-fixed coordinate system. The 
system is moving relative to the laboratory system with the TP velocity u = ue,. in the y direction. 
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One gets an alternative picture by using the total amount of the 
relative velocity g and the corresponding angles O' = ~9 also for the descrip- 
tion of the specular reflecting side. Now g' = g holds on both sides, but in 
the considered case of the anisotropic TP velocities (u.,~=0, uy~0), 
(cos ~9') is smaller on the specular side than on the diffuse side. (A detailed 
and more general discussion of the incident angle distribution functions for 
arbitrary test particles and the corresponding acceleration phenomena is 
given in the Appendix.) 

Thus the resulting asymmetric motion of the TP is caused by the dif- 
ferent influence of g in the specular and diffuse elastic cases, respectively. 
The necessary condition for the different contributions of g is an 
anisotropic TP velocity distribution. 

In fact, at the very first moment these effects are lacking for isotropic 
initial velocity distributions of the TP, e.g., p(u(0))=O(u) (see Figs. 3 and 
4). However, as mentioned above, the initial isotropy will be temporarily 
destroyed until complete equilibrium is reached. 

A similar effect was already found for asymmetric particles with one 
specular reflecting face and one absolutely inelastic face (total accommoda- 
tion)/ 14. 171 

5. S U M M A R Y  

With the simple model of a planar test particle in a rarefied classical 
gas and the simulation technique presented here, the detailed examination 
of relaxation to thermal equilibrium of test particles from any initial state 
is possible. The analytical expressions for the friction coefficients of diffuse 
and specular reflecting particles with large masses are confirmed by the 
numerical results. Moreover, the effect of directed acceleration has been 
shown for asymmetric particles (one side specular reflecting, the other side 
diffuse-elastic reflecting) in nonequilibrium with the medium. The asym- 
metric test particles are able to extract directed motion from the white 
noise of the thermal bath of gas particles as long as they are not completely 
(i.e., in all degrees of freedom) relaxed to thermodynamic equilibrium. 
Beside the different systems already discussed in the literature, ~-'1 this is 
another possibility to gain directed transport via spatial asynmaetry and a 
nonequilibrium state from white thermal noise without any external forces 
or gradients. 

A P P E N D I X  

With a mass ratio M/m = 1 between the TP and the GP, the assump- 
tions made in the derivation of (27) are not valid. For an obvious explanation 
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of the effects shown in Figs. 3 and 4, the following considerations are help- 
ful: In all cases examined by our numerical simulation, the initial velocity 
distribution of the ensemble of TP  is symmetric around 0 in the x direction. 
Consequently, the flux of incident particles and the mean amount of their 
relative velocities are the same on both sides of the TP. Under these condi- 
tions, the sign of the mean acceleration of the TP ensemble follows from 
the sum of the velocity changes due to impacts on both sides of the asym- 
metric test particle (15): 

'"~ O> " ,i,. ~ du',9. + du.,. - (cos  - (A1) 

(cos  0 )  is the mean cosine of the reflection angles on the specular side of 
the TP. The value 2/3 follows from (16) for the reflection angles on the 
diffuse side and is independent of the state of motion of the TP. 

If we know the distribution function of the incident angles 0 of the GP 
(which is equal to the distribution function of the specular reflected GP),  
we can determine the sign of the mean acceleration of the TP ensemble. 

To derive expressions for (cos  0 ) ,  we again consider the left-hand side 
of the test particle. The velocity distribution function of the incident gas 
particles is 

p(v) d~v ~ (v , . -  u,.) exp( - _~v-) d3v (A2) 

By multiplying (A2) with the velocity distribution p(u) of the TP, we get 
the probability density for a collision between a test particle with velocity 
u and a gas particle with velocity v. 

For the distribution function of the TP velocities, we make the 
following ansatz: 

~' ~ /~"exp  ---~u~. exp - - ~ ( u ~ + u ~ )  (A3) P(U) = ~-~ ~/2~ _ 

The parameters ct,, and e, determine the temperatures or the degrees of 
relaxation to equilibrium of the normal (x) and tangential (y, z) degrees of 
freedom of the TP, respectively. 

~ j=  1 corresponds to the equilibrium Maxwell distribution of the 
respective velocity component. With ct i ~  co, the distribution function of 
the corresponding velocity component tends to the delta function J(ui). 

Now we are able to construct the velocity distribution functions p(u) 
of the different test particle ensembles investigated in Figs. 3 and 4. As 
an example, we consider the ensemble of TP  with the initial condition 
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u(O) =0.  In this simplest case, the joint probability density of the TP and 
GP velocities reads 

p(V, U) d3v d3u ~ (v,. - Ux) exp( - �89 2) 6(u) d3v d3u (A4) 

We transform (A4) to the center-of-mass system by 

v = s + � 8 9  and u = s - � 8 9  (A5) 

g = v - u is the relative velocity between TP  and GP, and s is the center-of- 
mass velocity of TP and GP. In the transformation rules (A5) the mass 
ratio M / m  = 1 is used. 

The probability density (A4) transformed to the center-of-mass system 
reads 

p ( s , g ) d 3 s d 3 g ~ g . , . e x p [ - � 8 9 1 8 9 1 8 9  (A6) 

The integration over the center-of-mass velocities is trivial and yields the 
probability density of the relative velocity 

| "~ 
p(g) d3g ~ g.,. exp( - ~g-) (A7) 

Now we transform the distribution function (38) to spherical polar coor- 
dinates and integrate over the azimuth angle q~ from 0 to 2n and over the 
amount of the relative velocity g from 0 to Go. With the appropriate nor- 
malization, we finally arrive at the distribution function of the incident 
angles 0 

2 cos `9 sin ,9 dO (A8) 

In the same way we get the distribution functions of the incident angles for 
ensembles of TP in different initial states. In the general case of arbitrary 
values of the parameters ~,, and ~,, the incident angle distribution function 
reads 

20~,,o~ t COS ̀ 9 
sin 0 dO 

(c% + 1 )(ct, + 1){ [c(,,/(~,, + 1 )] cos-' ,9 + [ ct,/(ct, + 1)] sin 2 ,9} 2 

(A9) 

For the cases of interest (see Figs. 3 and 4), the values of (cos  0 )  due to 
the respective distribution functions (A9) can be calculated: 
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u.v eq, u,. 

LI x ~ O, 

u eq ~ (cos  ,9) = 3 ~ 0.67 (A10) 

u = 0  ~ ( cos `9 )  = ~ 0.67 ( A l l )  

= u_ = 0 =*- ( cos  ,9) ,,~ 0.75 (A12) 

u_,.., eq ~ ( cos  ,9) = �89 1 ~ 0.57 (A13) 

The abbreviation eq stands for equilibrium distribution, i.e., the respective 
initial velocity components are Maxwell distributed and in equilibrium 
with the gas medium. 

On the basis of (32) and (Al l ) - (A12)  the results of  the numerical 
simulation of asymmetric test particles shown in Figs. 3 and 4 find a simple 
qualitative explanation: 

The mean acceleration of an ensemble of TP  in equilibrium (A10) is 
zero. 

For  a TP ensemble initially at rest (A11 ), the initial mean acceleration 
is zero, too. However, due to the much faster relaxation to equilibrium of 
the normal degree of freedom [Eqs. (25) and (26)],  the ensemble of TP  
first approaches the state (AI2). In that state, the mean acceleration (32) 
is L[,. > 0. After the relaxation of the tangential degrees of freedom, the 
mean acceleration of the TP ensemble vanishes. 

From the initial state (A13), the TP  ensemble starts with a mean 
acceleration ~i,. < 0. The full equilibrium state is reached earlier than in the 
preceding case due to the faster relaxation of the normal degree of freedom. 

In a similar way, we can discuss the behavior of the ensembles of 
asymmetric test particles shown in Fig. 4. At the starting point, ~,, = ~, = 
holds. [Remember  that ~ > ( < ) 1  corresponds to an ensemble of T P  at 
lower (higher) temperature than the gas medium.] After a relatively short 
time, the normal degree of freedom of the test particles is relaxed to equi- 
librium (i.e., ~,, = 1 ), while for the tangential velocities ~, ~ l still holds. In 
this state, (A9) and (32) yield 

�9 , >  1 (i.e., To< T,,,) ~ ( cos  0)  > ~ i , . > 0  (A14) 

~, < 1 (i.e., T. > 7",,)  ~ ( cos  0)  < 3 =" li., < 0 (A15) 

which is exactly what we see in Fig. 4. 
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